IXxian-docker

Peter Krenesky

May 23, 2020

GETTING STARTED

Installation 1
Setup 3
2.1 1.Create 1XI1aN DY v v v v v e e e e e e e e e e e e e e e 3
2.2 2. Configure Docker Registries e 3
2.3 3. Moduleconfig e e e e e 4
Usage 5
3.1 Basics e e 5
3.2 Tasks . . . e e e e e e 6
33 Taskchecks L L 6
34 Forcingtasks L e e 7
35 Cleanbuild e e 7
3.6 Built-inhelp 7
Building Images 9
A1 SEtUD . . ot e e e e e e e e e e e e 9
4.2 ChooSING StAZES . « . v v v v e i e e e e e e e e e e e e e e e e e e e 9
Docker Registries 11
5.1 BuildCache e 11
5.2 Setup . .o e e e e e e e e 11
Writing modules 15
6.1 Basics. e 15
6.2 Designing Build Stages e 15
6.3 ImageLayout. 15
Designing Build Stages 17
7.1 Multistagebuilds oL 17
7.2 Nonlinear Builds L e e e 17
7.3 Registry Caching L e e 18
Image Layout 19
81 Baselmage e 19
82 Modules e e 19
83 RuntimeImage e e e e e e e 20
8.4 Development Environment L e e e e e e e 21
Docker 23
0.1 Config o e e e e e e 23

10

11

12

13

14

15

16

17

18

19

20

Python

T0.1 Setup . . . o o o e e e e e e e
10.2 Config o o e e e e e e e
103 Tasks o e e e e

Pytest

T1T Setup . . . o v e e e e e e e e e e e
11.2 Config o e e e e e e e e e
T1.3 Tasks . . o o o e e e e e e e e e e

Black

121 Setup . . . o o e e e e e e e
122 Config o e e e
12.3 Tasks o e e e e e e

Django

131 Setup o e
13.2 Config e
133 Tasks o e
134 Utls . ..

NPM

T4.1 Setup . . . o o o e e e e
14.2 Config o o e e e e e e e e e e
143 Tasks e e e e

Jest

IS.1 Setup . . . o v e e e e e e e e
15.2 Config o o e e e e e
153 Tasks o e e e e e e e e e e e e e e

Prettier

16.1 Setup o o e e e e e e e
162 Config o o e e e e e e
163 Tasks . . . o o o e e e

Webpack

I7.1 Setup . . . o o o e e e e e e e
17.2 Config o e e
17.3 Tasks . . . o

ESLint

I8.1 Setup . . . o o o e e e e e e e e
18.2 Config o i e e e e e e e e e
183 Tasks o o e e e e

Installation

Setup

20.1 1. Create ixX1an.PV « v v v v v e
20.2 2. Configure Docker Registries o i i i i i e e e e e e e e e e e
203 3. Moduleconfig e e e e e e e e

25
25
25
25

27
27
28
28

29
29
30
30

31
31
32
32
33

35
35
36
36

37
37
37
37

39
39
40
40

41
41
42
42

43
43
43
43

45

21 Usage
21.1 Basics. . .
21.2 Tasks . ..
21.3 Task checks

214 Forcing taskso e e e e e e e

21.5 Clean build
21.6 Built-in help

22 What’s an Ixian?

23 Indices and tables

49
49
50
50
51
51
51

53

55

CHAPTER
ONE

INSTALLATION

pip install ixian_docker

ixian-docker

2 Chapter 1. Installation

CHAPTER
TWO

2.1 1. Create ixian.py

Ixian apps must be initialize in ixian.py. Here is a basic setup for a django app.

SETUP

ixian.py
from ixian.config import CONFIG
from ixian.module import load_module

def init():
Load ixian core + docker core.
CONFIG.PROJECT_NAME = 'my_project'

load_module ('ixian.modules.core')
load_module ('ixian_docker.modules.docker")

Minimal setup for Django backend + Webpack compiled front end
load_module ('ixian_docker.modules.python')

load_module (

load_module ('ixian_docker.modules.npm')
load_module ('ixian_docker.modules.webpack")

'ixian_docker.modules.django')

2.2 2. Configure Docker Registries

Configure docker registries for pulling and pushing images.

from this url and path.

#

e.g. my.registries.domain.name.com/my_project

#

CONFIG.DOCKER.REGISTRY = 'my.registry.domain.name.com'
CONFIG.DOCKER.REGISTRY_PATH = 'my_project'

CONFIG.DOCKER.REGISTRIES = {
'my.registry.domain.name.com': {
'client': DockerClient,

addtional options may be passed in

'options': {
'username': "my_registry_user"
'password': "my_registry_password"

Specify the registry for your images. The image's name will be generated

(continues on next page)

ixian-docker

(continued from previous page)

}

See the section on docker registries for more information.

2.3 3. Module config

Modules each have their own requirements for configuration. Built-in modules have sane defaults where possible. See
specific module docs for details.

4 Chapter 2. Setup

CHAPTER
THREE

USAGE

3.1 Basics

Ixian apps are executed using the ix runner. This is the entry point for ixian apps. The general help page lists the
available tasks.

$ ix build_image

usage: ixian [--help] [--log LOG] [-—-force] [-—-force-all] [--clean]
[-—clean-all]

Run an ixian task.

positional arguments:
remainder arguments for task.

optional arguments:

—-help show this help message and exit

--log LOG Log level (DEBUG|INFO|WARN|ERROR|NONE)
——force force task execution

——force-all force execution including task dependencies
——clean clean before running task

——clean—-all clean all dependencies before running task
Type 'ix help <subcommand>' for help on a specific subcommand.
Available subcommands:

[Build]
build_image Build app image

Internal flags should be placed before the task.

ix —-—-force build_image

Any args after the task name are passed to task’s execute method.

For example, many tasks are wrappers around other command line tools. Pass ——he1p after the command to get that
tool’s internal help.

ix pytest —--help

ixian-docker

3.2 Tasks

Once configured you will have access to a number of tasks for building and interacting with the app in your image.
These will vary depending on what modules you’ve enabled. Here are a couple of examples.

* Build a docker image.

ix build_image

* Run the django test server.

ix runserver ‘

¢ Run automated tests.

ix test ‘

3.3 Task checks

Many tasks have state checks that determine if they are already complete. This can be viewed in ixian task help.
Completed dependencies are indicated by a check.

STATUS

build_image
v build_base_image
build_npm_image
build_webpack_image
build_python_image

If the task or any of it’s dependency are incomplete then the task and it’s incomplete dependencies will be run.

STATUS

build_image
v build_base_image
v build_npm_image
build_webpack_image
build_python_image

When all are complete then the task can be skipped. If checkers detect changes, such as modified config files, the
checkers will indicate a build.

STATUS
v build_image
v’ build_base_image
v build_npm_image
v build_webpack_image
v/ build_python_image

Note: If there are no checkers then a task runs every time it is called.

6 Chapter 3. Usage

ixian-docker

3.4 Forcing tasks

Task checks may be bypassed with ——force. Pass ——force-all to bypass checks for all dependencies.

3.5 Clean build

Some tasks have a clean function that removes build artifacts. Pass ——clean to call the clean function prior to
building. Pass ——clean-all to trigger clean for all dependencies. If a task doesn’t define a clean method then
——clean does nothing.

Passing ——clean also implies ——force.

3.6 Built-in help

All tasks have built in help generated from task docstrings and metadata. The help page should explain how to
configure and use the task. It also displays the state of tasks and any dependencies.

When in doubt, check help.

$ ix help build_image

NAME
build_image —-- Build app image

DESCRIPTION
Builds a docker image using CONFIG.DOCKER_FILE

STATUS
build_image
build_base_image
build_npm_image
build_webpack_image
build_python_image

3.4. Forcing tasks 7

ixian-docker

8 Chapter 3. Usage

CHAPTER
FOUR

BUILDING IMAGES

Ixian-docker can help you build images. More specifically, it orchestrates multi-stage builds that produce heirarchies
of docker images. It enable projects to stand up application stacks without worrying (as much) how to configure it all.
The goal is that you spend less time on the platform tooling and more building your application.

Ixian-docker projects combine a set of modules to form an application stack. Ixian modules provide tasks that build
intermediate images for platform features and provide development tools such as test runners and linters.

4.1 Setup

The set of modules that make up your stack is configured in ixian.py.

ixian.py

def init():
load ixian core
load_module ('ixian.modules.core')

load core docker module - provides core framework for building docker apps
load_module ('ixian_docker.modules.docker")

load modules to build your stack to your needs
load_module ('ixian_docker.modules.python')

Most modules provide config to customize their usage.

Update config as needed after loading modules.

CONFIG.PYTHON.REQUIREMENTS_FILES += [
"{PYTHON.ETC}/requirements—-dev.txt"

4.2 Choosing Stages

4.2.1 Built-ins
Ixian-docker comes with built-in modules that provide support for common build tools. They’re pre-wired to work
with each other making it the easiest way to stand up a project.

All modules are built on the core ixian module and the docker module. For all other modules see their pages for setup
instructions.

ixian-docker

Python

* Python - pip python packaging

Black - black code formatter
* Pytest - pytest test runner

* Django - django web framework

NodedS

* Python - NPM package manager

* Black - Prettier code formatter

* Pytest - Jest test runner

* Django - Webpack javascript bundler

* Django - ESLint javascript linter

4.2.2 Custom Build Stages

Ixian is a modular system that’s easily extended to add additional build stages. Read more about that /ere

10 Chapter 4. Building Images

CHAPTER
FIVE

DOCKER REGISTRIES

Ixian has support baked in to push and pull images from your docker registry.

5.1 Build Cache

Caching is baked into image building tasks and utilities. The docker registry is used as a cache. Images, including
intermediate images, may be pushed to the registry. Subsequent builds will pull those images when available.

This is built into existing image building tasks (e.g. build_image) and can be extended to other build layers.

5.2 Setup

5.2.1 Image Registry

1. Setup the image registry.

Specify the registry for your images.
from this url and path.
#

#
CONFIG.DOCKER.REGISTRY =
CONFIG.DOCKER.REGISTRY_PATH =

you may override if needed.
CONFIG.PYTHON.REGISTRY =

The image's name will be generated

e.g. my.registries.domain.name.com/my_project

'my.registry.domain.name.com'’
'my_project’

Registries for built-in modules default to DOCKER.REGISTRY but

'my.other.registry.domain.name.com'

2. Configure the registry

All registries that are configured for images must be configured in DOCKER.REGISTRIES to be

able to push/pull

CONFIG.DOCKER.REGISTRIES = {
'my.registry.domain.name.com': {

registry specific config goes here.

11

ixian-docker

5.2.2 Docker Registry / Docker.io

The default docker registry requires authentication to push images.

from ixian docker.modules.docker.utils.client .DockerClient

def init () :
... load modules

CONFIG.DOCKER.REGISTRIES = {
'my.registry.domain.name.com': {

'client': DockerClient,

addtional options may be passed in

'options': {
'username': "my_registry_user"
'password': "my_registry_password"

Warning: This hasn’t been tested, but it may work.

Warning: Don’t store your password in ixian.py use vault or similar to load it at runtime.

5.2.3 Openshift

Not supported yet.

5.2.4 Amazon ECR

Elastic Container Registry (ECR) is Amazon’s docker registry.
1. Setup AWS CLI

ECR integration uses boto3 to authenticate via the AWS APIL. You must configure the AWS CLI in
your host environment. Ixian-docker will use whichever authentication method is configured for the

CLL
2. Configure registry

from ixian_ docker.modules.docker.utils.client .ECRDockerClient

def init () :
... load modules

CONFIG.DOCKER.REGISTRIES = {
'my.registry.domain.name.com': {

'client': ECRDockerClient,

addtional options may be passed in

'options': {

(continues on next page)

12 Chapter 5. Docker Registries

ixian-docker

(continued from previous page)

'region_name': "us-west-2"

Error: ~/.docker/config. json mustbe cleared manually for ECR authentication. Tokens aren’t removed
when they expire. Once a token expires it will cause login failures until it’s manually cleared.

5.2. Setup 13

ixian-docker

14 Chapter 5. Docker Registries

CHAPTER
SIX

WRITING MODULES

6.1 Basics

Ixian provides a module system. See their documentation for the basics on how to build a module: https://ixian.
readthedocs.io/en/latest/modules.html

Modules for Ixian-docker may provide a few things:
* Build stages - A stage that produces an image.
* Build fragments - A fragment that contributes to another build stage.
* Runtime tools - Anything needed for runtime, including development tools.

» Config - Configuration settings to make all of the above configurable.

6.2 Designing Build Stages

Check out the documentation for multi-stage builds to learn more about how build stages work and how to construct a
custom build stage.

6.3 Image Layout

Ixian modules use a Dockerfile layout designed to support modular multi stage builds. This requires a common image
layout scheme so modules play nice together.

Checkout the documentation on the common image layout for more information.

15

https://ixian.readthedocs.io/en/latest/modules.html
https://ixian.readthedocs.io/en/latest/modules.html

ixian-docker

16 Chapter 6. Writing modules

CHAPTER
SEVEN

DESIGNING BUILD STAGES

7.1 Multi stage builds

Ixian-docker provides tools to create and arrange build images in stages. Each stage produces an image which may be
cached in the registry. Each stage builds on the stages before it.

For example, a python web app with a javascript front-end might have these
—build steps.

Base —-> Python -> NodeJS -> Pip —-> NPM -> Webpack -> Runtime

By splitting the build into stages earlier steps can be cached and skipped, reducing the length of rebuilds. The ideal
stage to cache is one that is lengthy to build but doesn’t change too often.

Stages can be linked together dynamically using args in the Dockerfile for the image name and tag.

The base image can be configured dynamically using build args
ARG $BASE_IMAGE
FROM S$SBASE_IMAGE

7.2 Nonlinear Builds

Multi stage builds need not be linear. They may be arranged in a tree structure to decouple lengthy build steps that
aren’t interdependent.

For example, NPM and Python can be decoupled.

Base -> Python —-———--—--———— > Runtime
| /
-> NPM -> Webpack -/

Once all intermediate images are built, they must be merged into a final runtime.
1. Pick one of your images to be the main branch. This should probably be the largest image.

2. COPY files in from other intermediate images

build can be configured at runtime with tagged images.
ARG SPYTHON_TMAGE

merge compiled static from webpack into runtime

(continues on next page)

17

ixian-docker

(continued from previous page)

FROM SWEBPACK_IMAGE AS webpack
FROM SPYTHON_IMAGE
COPY —-from=webpack compiled_static SAPP_ENV/

7.3 Registry Caching

Docker-ix supports using your docker registry as a cache for building images. Task state hashes can be used as
identifiers for builds. When building the registry is checked for a matching identifier. If an image is present it’s pulled
instead of built.

Hint: if a stage is built, all descendant stages will be built too. Order your stages so slower and least frequently
updated stages come first.

Registries are configured in your ixian.py see Registry Setup for details.

18 Chapter 7. Designing Build Stages

CHAPTER
EIGHT

IMAGE LAYOUT

Ixian modules use a Dockerfile layout designed to support modular multi stage builds. The layout is structured mini-
mize COPY commands and simplify task checks when working with multiple stages.

8.1 Base Image

Image builds must specify a base image. This may be a stock image such as Phusion/base-image or your own
base image.

A customized base image is a good place to put lengthy installs or configuration that doesn’t change very often. Note
that all other images extend the base image. Changes here trigger a rebuild of all other images.

Examples of files that belong in the base: * Package updates and installs (e.g. apt, yam) * Certificates * Any other
common tooling

Note: Ixian tries to be platform agnostic but when needed it’s build stages will be designed for Phusion/base-image,
a docker optimized Ubuntu variant.

http://phusion.github.io/baseimage-docker/

8.2 Modules

Modules build a heirarchy of stages on top of the base image.

Modules files are stored in DOCKER . WORK_DIR. Files are arranged by the stages they are added in.

/opt/project
+- bin // All module executables may go in this directory.
| exe_1 // These do not trigger rebuilds.
| exe_2
|
\- etc
+— module_1 // Module config belongs in etc. Each module uses it's own
\ file_a // directory
| file_b
\- module_2
file_c

Executables share a directory. Changes to executables don’t trigger rebuilds so they share a directory.

19

http://phusion.github.io/baseimage-docker/

ixian-docker

/opt/project
+- bin
exe_1
exe_2

Config files are split up into separate directories to simplify completeness checks and building images. Built-in mod-
ules each only use their own directory. Only this directory needs to be checked by completeness checks.

class MyImageBuildTask (Task)
check = [
Checking the entire directory without enumerating specific files
FileHash ("/opt/project/etc/my_module")

When the image is built only these two directories need to be copied in.

In the modules Dockerfile, copy in the related files.
COPY root/project/bin/ /opt/project/bin
COPY root/project/etc/my_module /opt/project/etc/

8.3 Runtime Image

The runtime image is used to combine files from the intermediate images. It also adds runtime config files that weren’t
needed by build stages. This is the final step to building an image.

Examples of runtime files:
e Test runner and lint configs
* Web server configs

e .env files

\- etc
+— runtime // The runtime has a config directory like everything other module
| file_a
| file_b

If they can be, built-in tools are configured to expect the config file in the modules et c. Some build tools require
symlinks to the config file to be added to the DOCKER . WORKING_DIR. Built-ins that require this will indicate so in
their setup instructions. These symlinks can be created in either base image or runtime image.

for example, package.json must be in the working directory °~ 'NPM install’ 1is_
—called from
RUN 1n -s /opt/project/etc/npm/package. json

20 Chapter 8. Image Layout

ixian-docker

8.4 Development Environment

Development enviroment uses docker-compose to buid a runtime rather than the runtime itself. Within docker-compose
volumes may be used for live-code editing. This avoids rebuilding the runtime image whenever it’s dependencies
change. If your build-stage stages are designed well, the runtime image only has operations to merge intermediate
images making it simple to replicate with docker-compose volumes.

bin and etc only require a single volume each. Modules don’t need to do anything special as they store their files
under this directory.

docker—compose run \

-v root/project/bin/:/opt/project/bin \
-v root/project/etc/:/opt/project/etc
app

8.4. Development Environment 21

ixian-docker

22

Chapter 8. Image Layout

CHAPTER
NINE

DOCKER

Core docker layout and other utility tasks. Features for creating images and running containers are included.

9.1 Config

9.2 Tasks

9.2.1 clean_docker

Kill and remove all docker containers

9.2.2 build_base_image

Builds the docker app using CONFIG.DOCKER_FILE_BASE. This image is built prior to all intermediate layers.

9.2.3 build_image

Builds the final docker image using CONFIG.DOCKER_FILE

9.2.4 compose

Run a docker-compose command in app container.

9.2.5 bash

Bash shell in app container.

23

ixian-docker

9.2.6 up

Start app container.

9.2.7 down

Stop app container.

24 Chapter 9. Docker

CHAPTER
TEN

PYTHON

The Python module
https://www.npmjs.com/

This module builds an image containing installed python packages

Warning: This module is requires Python be installed in your image. Ixian does not yet provide a module that
installs python for you but one is on the drawing board. For now install a system python. Likely the new module
will use pyenv to install python versions.

10.1 Setup

1. Load the Python module within your ixian.py

ixian.py

def init () :
load_module ('ixian_docker.modules.python')

10.2 Config

10.3 Tasks

10.3.1 build_python_image

Build image with packages installed from requirements.txt

25

https://www.npmjs.com/

ixian-docker

10.3.2 pip

The Pip package manager.

This task is is a wrapper around the pip command line utility. It runs within the container started by compose. You
may use it to manage packages in a development environment.

Other arguments and flags are passed through to pip. For example, this returns pip internal help.

ix pip —--help

26 Chapter 10. Python

CHAPTER
ELEVEN

PYTEST

The Pytest python test runner. This module provides the tasks and configs for using Pytest within your project.

pytest is a mature full-featured Python testing tool that helps you write better,
—programs.

The pytest framework makes it easy to write small tests, yet scales to support complex
functional testing for applications and libraries.

https://docs.pytest.org/en/latest/

Note: This module requires python is installed in your image. Ixian does not yet provide a Python module that does
this for you but one is coming soon based on pyenv. Until then it is recommended you install a version of python
using pyenv.

11.1 Setup

1. Load the Pytest module within your ixian.py

ixian.py

def init () :
load_module ('ixian_docker.modules.pytest')

2. Install pytest

Ixian doesn’t install pytest for you. There are too many versions so it’s up to you to install the version
compatibile with your code.

If you’re using the PYTHON module then just add pytest to your requirements.txt.

pip install pytest

3. Configure pytest

Pytest may be configured by creating a pytest . ini file. This is where you configure your app specific
settings.

Here is a very basic config file

27

https://docs.pytest.org/en/latest/

ixian-docker

[pytest]
python_files = tests.py test_x.py x_tests.py
testpaths = src/my_app

Warning: Pytest normally may be configured by other means such as pyproject . toml but those
are not officially supported. It may be possible to alter PYTEST . ARGS to use these other means.

11.2 Config

11.3 Tasks

11.3.1 pytest

Run the pytest python test runner.

This task is a proxy to the Pytest python test runner. It uses compose to execute pytest within the context of the app
container.

Other arguments and flags are passed through to Pytest. For example, this returns pytest internal help.

ix pytest —--help

28 Chapter 11. Pytest

CHAPTER
TWELVE

BLACK

The Black python formatter. This module provides the tasks and configs for using Black within your project.

Black is the uncompromising Python code formatter. By using it, you agree to cede
—control over

minutiae of hand-formatting. In return, Black gives you speed, determinism, and
—freedom from

pycodestyle nagging about formatting. You will save time and mental energy for more
—important

matters.

Blackened code looks the same regardless of the project you're reading. Formatting,,
—becomes
transparent after a while and you can focus on the content instead.

https://black.readthedocs.io/en/stable/

Note: This module requires python is installed in your image. Ixian does not yet provide a Python module that does
this for you but one is coming soon based on pyenv. Until then it is recommended you install a version of python
using pyenv.

12.1 Setup

1. Load the Black module within your ixian.py

ixian.py

def init () :
load_module ('ixian_docker.modules.black")

2. Configure Black

Black uses pyproject.toml for configuration. Here is an example config:

29

https://black.readthedocs.io/en/stable/

ixian-docker

12.2 Config

12.3 Tasks

12.3.1 black

Run the black formatter.

This is a wrapper around black that runs it within the docker image using compose. Args are passed through to
black.

For example, this returns black internal help.

$ ix black --help

12.3.2 black_check

Run the black formatter with ——check. This task will return non-zero if any files require formatting but won’t update
them.

30 Chapter 12. Black

CHAPTER
THIRTEEN

DJANGO

This module provides the tasks and configs for using the Django web framework within your app. It provides high
level functions for interacting with django while it’s running inside a docker container.

Django is a high-level Python Web framework that encourages rapid development and
—clean,

pragmatic design. Built by experienced developers, it takes care of much of the
—~hassle of Web

development, so you can focus on writing your app without needing to reinvent the
—wheel. It's

free and open source.

https://www.djangoproject.com/

Note: This module requires python is installed in your image. Ixian does not yet provide a Python module that does
this for you but one is coming soon based on pyenv. Until then it is recommended you install a version of python
using pyenv.

13.1 Setup

1. Load the Django module within your ixian.py

ixian.py

def init():
load_module ('ixian_docker.modules.django')

2. Install Django

Ixian doesn’t install d jango for you. There are too many versions so it’s up to you to install the version
compatibile with your code.

If you’re using the PYTHON module then just add d jango to your requirements. txt.

pip install django

3. Create your django app

TODO: need to describe how to setup file structure and configure along with the python module

31

https://www.djangoproject.com/

ixian-docker

13.2 Config

13.3 Tasks

13.3.1 manage

Run the django manage.py management script.

This task is a proxy to the Django management script. It uses compose to execute manage . py within the context of
the app container.

Other arguments and flags are passed through to Pytest. For example, this returns manage . py internal help.

ix manage --help

13.3.2 shell

Shortcut to manage . py shell within compose environment.

13.3.3 shell_plus

Shortcut to manage .py shell_plus within compose environment.

13.3.4 django_test

Shortcut to Django test runner

This shortcut runs within the context of the app container. Volumes and environment variables for loaded modules are
loaded automatically via docker-compose.

The command automatically sets these settings: —settings={ DJANGO.SETTINGS_TEST} —exclude-
dir={DJANGO.SETTINGS_MODULE}

Arguments are passed through to the command.

13.3.5 migrate

Shortcut to manage .py migrate within compose environment.

13.3.6 makemigrations

Shortcut to manage .py makemigrations within compose environment.

32 Chapter 13. Django

ixian-docker

13.3.7 dbshell

Shortcut to manage .py dbshell within compose environment.

13.3.8 runserver

Shortcut to manage .py runserver 0.0.0.0:8000 within compose environment.
runserver automatically sets ——service—-ports.

By default runserver will start on 0.0.0.0:8000. If any args are passed the first arg must be the host : port. For
example this changes the port.

ix runserver 0.0.0.0:8001

13.4 Utils

13.4.1 manage

manage is a shortcut to calling manage.py with run

13.4. Utils 33

ixian-docker

34

Chapter 13. Django

CHAPTER
FOURTEEN

NPM

The NPM module provides tasks for installing and managing javascript packages using the NPM package manager.

—to making JavaScript
—the center of

—~largest software registry

in the world. Our other tools and services take the Registry,
—you do around it, to

the next level.

JavaScript code sharing, and with more than one million packages, the

Relied upon by more than 11 million developers worldwide, npm is committed,

development elegant, productive, and safe. The free npm Registry has become

and the work,_

https://www.npmjs.com/
This module has these features:
* It builds an image with NPM packages installed.
e NPM and NCU tasks for managing packages

Note: This module requires NodeJS be installed in your image. Ixian does not yet provide a NodeJS module but one
based on NVM is in the works. Until then it is recommended you install a node version using NVM.

14.1 Setup

1. Load the NPM module within your ixian.py

ixian.py

def init () :
load_module ('ixian_docker.modules.npm')

2. Configure NPM

NPM uses package . json for configuration which your project must provide. This is configured with

NPM.PACKAGE_ JSON which defaults to DOCKER.APP_ENV/package. json

NPM requires package . json be in your working directory.

35

https://www.npmjs.com/

ixian-docker

14.2 Config

14.3 Tasks

14.3.1 build_npm_image

Build the NPM image.

This is an intermediate image built using DOCKER . BASE_IMAGE as it’s base. The resulting image will contain all
packages as defined by NPM.PACKAGE_JSON.

This task will reuse existing images if possible. It will only build if there is no image available locally or in the registry.
If -—force is received the image will build even if an image already exists.

——force implies skip-cache for docker build.

14.3.2 ncu

Update packages using Node Check Update (ncu).

This task is used to update package versions defined in NPM. PACKAGE_JSON. By default this will only update the
config file without updating the installed versions.

This task is is a wrapper around the ncu command line utility. It runs within the container started by compose. You
may use it to manage packages in a development environment.

Other arguments and flags are passed through to ncu. For example, this returns ncu internal help.

ix ncu --help

14.3.3 npm

The NPM package manager.

This task is is a wrapper around the npm command line utility. It runs within the container started by compose. You
may use it to manage packages in a development environment.

Other arguments and flags are passed through to npm. For example, this returns npm internal help.

ix npm —--help

36 Chapter 14. NPM

CHAPTER
FIFTEEN

JEST

The Jest javascript test runner. This module provides the tasks and configs for using Jest within your project.

Jest is a delightful JavaScript Testing Framework with a focus on simplicity.

It works with projects using: Babel, TypeScript, Node, React, Angular, Vue and more!

https://jestjs.io/

15.1 Setup

1. Load the Jest module within your ixian.py

ixian.py

def init () :
load_module ('ixian_docker.modules. jest')

2. Install Jest

Ixian doesn’t install jest for you. There are too many versions so it’s up to you to install the version
compatible with your code.

If you’re using the NPM module then just add prettier to your package. json.
3. Configure Jest

Jest is configured by CONFIG.JEST.CONFIG_FILE which defaults to jest.config. json. Your
project must provide this config file.

15.2 Config

15.3 Tasks

15.3.1 jest

Run the Jest javascript test runner.

This task is a proxy to the Jest javascript test runner. It uses compose to execute jest within the context of the app
container.

Configuration is configured by default as:

37

https://jestjs.io/

ixian-docker

——config={JEST.CONFIG_FILE_PATH}

Other arguments and flags are passed through to jest.

For example, this returns jest internal help.

’$ ix jest —--help

38 Chapter 15. Jest

CHAPTER
SIXTEEN

PRETTIER

The Prettier javascript formatter. This module provides the tasks and configs for using Prettier within your project.

What is Prettier?

- An opinionated code formatter
- Supports many languages

— Integrates with most editors
Has few options

https://prettier.io/

16.1 Setup

1. Load the Prettier module within your ixian.py

ixian.py

def init () :
load_module ('ixian_docker.modules.prettier')

2. Install Prettier

Ixian doesn’t install prettier for you. There are too many versions so it’s up to you to install the
version compatibile with your code.

If you’re using the NPM module then just add prettier to your package. json.

npm install --save prettier

3. Customize config if needed
Prettier works without them but if you want to customize config as needed:
e .prettierrc - config file
e _prettierignore - ignore files

These files should be present or symlinked in the working directory of the app (DOCKER . APP_ENV).

39

https://prettier.io/

ixian-docker

16.2 Config
16.3 Tasks

16.3.1 prettier

Run the Prettier javascript formatter.

This task is a proxy to the Prettier python formatter. It uses compose to execute prettier within the context of
the app container.

Other arguments and flags are passed through to prettier.

For example, this returns prettier internal help.

ix prettier --help

16.3.2 prettier_check

Run the prettier formatter with ——check. This task will return non-zero if any files require formatting but won’t
update them.

40 Chapter 16. Prettier

CHAPTER
SEVENTEEN

WEBPACK

The Webpack javascript bundler. This module provides the tasks and configs for using Webpack within your project.

webpack is a module bundler. Its main purpose is to bundle JavaScript files for usage
—in a

browser, yet it is also capable of transforming, bundling, or packaging just about
—,any resource

or asset.

https://github.com/webpack/webpack

17.1 Setup

1. Load the Webpack module within your ixian.py

ixian.py

def init():
load_module ('ixian_docker.modules.webpack"')

2. Install webpack

Ixian doesn’t install webpack for you. There are too many versions so it’s up to you to install the version
compatibile with your code.

If you’re using the NPM module then just add webpack to your package. json.

npm install --save webpack

3. Configure webpack

Webpack config is stored in webpack.config. js.

41

https://github.com/webpack/webpack

ixian-docker

17.2 Config

17.3 Tasks

17.3.1 build_webpack_image

Build image with javascript, css, etc. compiled by Webpack.
This is an intermediate image that extends DOCKER . BASE_ IMAGE.

Ixian includes a template for this image. The dockerfile is configured by WEBPACK . DOCKERFILE. By default it’s a
jinja template that renders to WEBPACK . RENDERED_DOCKERFILE.

The image will store compiled output in WEPBACK.COMPILED_STATIC_DIR by default.

This task will reuse existing images if possible. It will only build if there is no image available locally or in the registry.
If ——force is received the image will build even if an image already exists.

—-—force implies skip-cache for docker build.

17.3.2 webpack

Run the webpack javascript/css compiler.

This is a wrapper around webpack that runs it within the docker image using compose. Args are passed through to
webpack.

For example, this returns webpack internal help.

$ ix webpack —--help

42 Chapter 17. Webpack

CHAPTER
EIGHTEEN

ESLINT

The ESLint javascript linter. This module provides the tasks and configs for using ESLint within your project.

ESLint is a tool for identifying and reporting on patterns found in ECMAScript/
—~JavaScript code.

https://eslint.org/

18.1 Setup

1. Load the ESLint module within your ixian.py

ixian.py

def init () :
load_module ('ixian_docker.modules.eslint')

2. Install ESLint

Ixian doesn’t install es1int for you. There are too many versions so it’s up to you to install the version
compatibile with your code.

If you’re using the NPM module then just add eslint to your package. json.

npm install --save eslint

3. Customize config if needed

ESLint works without it but you may customize settings with .eslintrc

18.2 Config
18.3 Tasks

18.3.1 eslint

Run the ESLint javascript linter.

This task is a proxy to the Prettier python formatter. It uses compose to execute eslint within the context of the
app container. This task returns non-zero if linting fails.

43

https://eslint.org/

ixian-docker

Other arguments and flags are passed through to prettier. For example, this returns es1int internal help.

ix eslint --help

Ixian-Docker is a tool that manages docker builds and provides development tooling for interacting with your docker
app. Prebuilt modules are included to construct an application stack quickly. Ixian’s goal is to build applications with
sane defaults, but not stand in your way if you’d like to configure or extend it to better suit your needs.

There are several things Ixian-docker will help you with:
* Building a heirarchy of docker images.
* Pluggable platform features like Python, NodeJS, Django, and more.

* Provides a command line interface to your application running within a local container.

44 Chapter 18. ESLint

CHAPTER
NINETEEN

INSTALLATION

pip install ixian_docker

45

ixian-docker

46

Chapter 19. Installation

CHAPTER
TWENTY

20.1 1. Create ixian.py

Ixian apps must be initialize in ixian.py. Here is a basic setup for a django app.

SETUP

ixian.py
from ixian.config import CONFIG
from ixian.module import load_module

def init():
Load ixian core + docker core.
CONFIG.PROJECT_NAME = 'my_project'

load_module ('ixian.modules.core')
load_module ('ixian_docker.modules.docker")

Minimal setup for Django backend + Webpack compiled front end

load_module ('ixian_docker.modules.python')

load_module ('ixian_docker.modules.django')

load_module ('ixian_docker.modules.npm')
(

load_module ('ixian_docker.modules.webpack")

20.2 2. Configure Docker Registries

Configure docker registries for pulling and pushing images.

from this url and path.

#

e.g. my.registries.domain.name.com/my_project

#

CONFIG.DOCKER.REGISTRY = 'my.registry.domain.name.com'
CONFIG.DOCKER.REGISTRY_PATH = 'my_project'

CONFIG.DOCKER.REGISTRIES = {
'my.registry.domain.name.com': {
'client': DockerClient,

addtional options may be passed in

'options': {
'username': "my_registry_user"
'password': "my_registry_password"

Specify the registry for your images. The image's name will be generated

(continues on next page)

47

ixian-docker

See the section on docker registries for more information.

20.3 3. Module config

(continued from previous page)

}

Modules each have their own requirements for configuration. Built-in modules have sane defaults where possible. See

specific module docs for details.

48

Chapter 20. Setup

CHAPTER
TWENTYONE

USAGE

21.1 Basics

Ixian apps are executed using the ix runner. This is the entry point for ixian apps. The general help page lists the
available tasks.

$ ix build_image

usage: ixian [--help] [--log LOG] [-—-force] [-—-force-all] [--clean]
[-—clean-all]

Run an ixian task.

positional arguments:
remainder arguments for task.

optional arguments:

—-help show this help message and exit

--log LOG Log level (DEBUG|INFO|WARN|ERROR|NONE)
——force force task execution

——force-all force execution including task dependencies
——clean clean before running task

——clean—-all clean all dependencies before running task
Type 'ix help <subcommand>' for help on a specific subcommand.
Available subcommands:

[Build]
build_image Build app image

Internal flags should be placed before the task.

ix —-—-force build_image

Any args after the task name are passed to task’s execute method.

For example, many tasks are wrappers around other command line tools. Pass ——he1p after the command to get that
tool’s internal help.

ix pytest —--help

49

ixian-docker

21.2 Tasks

Once configured you will have access to a number of tasks for building and interacting with the app in your image.
These will vary depending on what modules you’ve enabled. Here are a couple of examples.

* Build a docker image.

ix build_image

* Run the django test server.

ix runserver ‘

¢ Run automated tests.

ix test ‘

21.3 Task checks

Many tasks have state checks that determine if they are already complete. This can be viewed in ixian task help.
Completed dependencies are indicated by a check.

STATUS

build_image
v build_base_image
build_npm_image
build_webpack_image
build_python_image

If the task or any of it’s dependency are incomplete then the task and it’s incomplete dependencies will be run.

STATUS

build_image
v build_base_image
v build_npm_image
build_webpack_image
build_python_image

When all are complete then the task can be skipped. If checkers detect changes, such as modified config files, the
checkers will indicate a build.

STATUS
v build_image
v’ build_base_image
v build_npm_image
v build_webpack_image
v/ build_python_image

Note: If there are no checkers then a task runs every time it is called.

50 Chapter 21. Usage

ixian-docker

21.4 Forcing tasks

Task checks may be bypassed with ——force. Pass ——force-all to bypass checks for all dependencies.

21.5 Clean build

Some tasks have a clean function that removes build artifacts. Pass ——clean to call the clean function prior to
building. Pass ——clean-all to trigger clean for all dependencies. If a task doesn’t define a clean method then
——clean does nothing.

Passing ——clean also implies ——force.

21.6 Built-in help

All tasks have built in help generated from task docstrings and metadata. The help page should explain how to
configure and use the task. It also displays the state of tasks and any dependencies.

When in doubt, check help.

$ ix help build_image

NAME
build_image —-- Build app image

DESCRIPTION
Builds a docker image using CONFIG.DOCKER_FILE

STATUS
build_image
build_base_image
build_npm_image
build_webpack_image
build_python_image

21.4. Forcing tasks 51

ixian-docker

52

Chapter 21. Usage

CHAPTER
TWENTYTWO

WHAT’S AN IXIAN?

Ixian is a flexible build tool that this project is built with. Ixian provides the platform to define and arrange a heirarchy
of interrelated tasks into a command line app.

53

https://github.com/kreneskyp/ixian

ixian-docker

54

Chapter 22. What’s an Ixian?

CHAPTER
TWENTYTHREE

INDICES AND TABLES

* genindex
¢ modindex

¢ search

55

	Installation
	Setup
	1. Create ixian.py
	2. Configure Docker Registries
	3. Module config

	Usage
	Basics
	Tasks
	Task checks
	Forcing tasks
	Clean build
	Built-in help

	Building Images
	Setup
	Choosing Stages

	Docker Registries
	Build Cache
	Setup

	Writing modules
	Basics
	Designing Build Stages
	Image Layout

	Designing Build Stages
	Multi stage builds
	Nonlinear Builds
	Registry Caching

	Image Layout
	Base Image
	Modules
	Runtime Image
	Development Environment

	Docker
	Config
	Tasks

	Python
	Setup
	Config
	Tasks

	Pytest
	Setup
	Config
	Tasks

	Black
	Setup
	Config
	Tasks

	Django
	Setup
	Config
	Tasks
	Utils

	NPM
	Setup
	Config
	Tasks

	Jest
	Setup
	Config
	Tasks

	Prettier
	Setup
	Config
	Tasks

	Webpack
	Setup
	Config
	Tasks

	ESLint
	Setup
	Config
	Tasks

	Installation
	Setup
	1. Create ixian.py
	2. Configure Docker Registries
	3. Module config

	Usage
	Basics
	Tasks
	Task checks
	Forcing tasks
	Clean build
	Built-in help

	What’s an Ixian?
	Indices and tables

